References

1. Assan R et al. Evolution de parameters hormonaux (glucagon, cortisol, hormone somatotrope) et énergétiques (glucose, acides gras libres, glycérol) dans dix acidocétoses diabétiques graves traitées. Pathol Biol. 1969;17:1095-1098.

2. Unger RH et al. Studies of pancreatic α-cell function in normal and diabetic subjects. J Clin Invest. 1970;49:837-848.

3. Herrera PL et al. Embryogenesis of the murine endocrine pancreas; early expression of pancreatic polypeptide gene. Development(Cambridge, England). 1991;113:1257-1265

4. Bonner-Weir S et al. β-cell growth and regeneration: replication is only part of the story. Diabetes. 2010;59:2340-2348

5. Gannon M et al. pdx-1 function is specifically required in embryonic β cells to generate appropriate numbers of endocrine cell types and maintain glucose homeostasis. Dev Biol. 2008;314:406-417

6. Johansson KA et al. Temporal control of neurogenin3 activity in pancreas progenitors reveals competence windows for the generation of different endocrine cell types. Developmental Cell. 2007;12:457-465.

7. Collombat P et al. Embryonic endocrine pancreas and mature β cells acquire α and PP cell phenotypes upon Arx misexpression. J Clin Invest. 2007;117:961-970.

8. Sosa-Pineda B et al. The Pax4 gene is essential for differentiation of insulin-producing β cells in the mammalian pancreas. Nature. 1997;386:399-402

9. Collombat P et al. The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into α and subsequently β-cells. Cell. 2009;138:449-462.

10. Kawamori D et al. Insulin signaling in α cells modulates glucagon secretion in vivo. Cell Metab. 2009;9:350-361.

11. Cnop M et al. The long lifespan and low turnover of human islet β cells estimated by mathematical modelling of lipofuscin accumulation. Diabetologia. 2010;53:321-330

12. Philippe J. Structure and pancreatic expression of the insulin and glucagon genes. Endoc Rev. 1991; 12: 252-71.

13. Kieffer TJ, Habener JF. The glucagon-like peptides. Endocrine Review. 1999; 20: 876-913.

14. Irwin DM. Molecular evolution of mammalian incretin hormone genes. Regul Pept. 2009;155:121-130.

15. St-Onge L et al. Pax6 is required for differentiation of glucagon-producing α-cells in mouse pancreas. Nature. 1997;387:406.

16. Gosmain Y et al. Pax6 Controls the expression of critical genes involved in pancreatic α-cell differentiation and function. J Biol Chem. 2010;285,43:33381.

17. Maruyama H et al. Insulin within islets is a physiologic glucagon release inhibitor. J Clin Invest. 1984;74(6):2296-2299.

18. Diao J et al. Glucose-regulated glucagon secretion requires insulin receptor expression in pancreatic α-cells. J Biol Chem. 2005;280:33487-96.

19. Zhou H et al. Regulation of α-cell function by the β-cell during hypoglycemia in Wistar rats: the “switch-off ” hypothesis. Diabetes. 2004;53:1482-1487.

20. Hope KM et al. Regulation of α-cell function by the β-cell in isolated human and rat islets deprived of glucose: the “switch off” hypothesis. Diabetes. 2004;53:1488-1495.

21. Meier JJ et al. Postprandial suppression of glucagon secretion depends on intact pulsatile insulin secretion: further evidence for the intraislet insulin hypothesis. Diabetes. 2006;55:1051-1056.

22. Cooperberg BA and Cryer PE. Insulin reciprocally regulates glucagon secretion in humans. Diabetes. 2010;59:2936-2940.

23. Holst JJ et al. The incretin system and its role in type 2 diabetes mellitus. Mol Cell Endocrinol. 2009;297:127–136.

24. Drucker DJ. The biology of incretin hormones. Cell Metab. 2006; 3:153-165.

25. Hansotia T et al. Double incretin receptor knockout (DIRKO) mice reveal an essential role for the enteroinsular axis in transducing the glucoregulatory actions of DPP-IV inhibitors. Diabetes. 2004;53:1326-1335.

26. Salehi M et al. Effect of endogenous GLP-1 on insulin secretion in type 2 diabetes. Diabetes. 2010;59:1330-1337.

27. De Marinis YZ et al. GLP-1 inhibits and adrenaline stimulates glucagon release by differential modulation of N- and L typeCa2+ channel-dependent exocytosis. Cell Metab. 2010;11:543-553.

28. de H.J., Rasmussen C et al. Glucagon-like peptide-1, but not glucose-dependent insulinotropic peptide, inhibits glucagon secretion via somatostatin (receptor subtype 2) in the perfused rat pancreas. Diabetologia. 2008;51:2263-2270.

29. Hare KJ et al. Inappropriate glucagon response after oral compared with isoglycemic intravenous glucose administration in patients with type 1 diabetes. Am J Physiol Endocrinol Metab. 2010;298:E832-E837.

30. Lund A et al. The separate and combined impact of the intestinal hormones, GIP, GLP-1 and GLP-2, on glucagon secretion in type 2 diabetes. Am J Physiol Endocrinol Metab. 2011. In press.

31. Hare KJ et al. The glucagonostatic and insulinotropic effects of glucagon-like peptide 1 contribute equally to its glucose lowering action. Diabetes. 2010;59:1765-1770.

32. Diao J et al. UCP2 is highly expressed in pancreatic α-cells and influences secretion and survival. PNAS. 2008;105:12057-12062.

33. Lee SC et al. Uncoupling protein 2 regulates reactive oxygen species formation in islets and influences susceptibility to diabetogenic action of streptozotocin. Journal of Endocrinology. 2009;203:33.

34. Gromada J et al. Somatostatin inhibits exocytosis in rat pancreatic α-cells by G(i2)-dependent activation of calcineurin and depriming of secretory granules. J Physiol. 2001 1;535(Pt 2):519-532.

35. Rorsman P et al. Glucose-inhibition of glucagon secretion involves activation of GABAA-receptor chloride channels. Nature.1989;341:233-236

36. Yamada H, et al. Ca2+-dependent exocytosis of L-glutamate by αTC6, clonal mouse pancreatic α-cells. Diabetes.2001;50:1012-1020.

37. Slucca M et al. ATP-sensitive K+ channel mediates the zinc switch-off signal for glucagon response during glucose deprivation. Diabetes. 2010;59:128-134.

38. Munoz A et al. Regulation of glucagon secretion at low glucose concentrations: evidence for adenosine triphosphate-sensitive potassium channel involvement. Endocrinology. 2005;146:5514-5521.

39. Gromada J et al. ATP-sensitive K+ channel-dependent regulation of glucagon release and electrical activity by glucose in wild-type and SUR1-/- mouse α-cells. Diabetes. 2004;53 Suppl 3:S181-189.

40. Ramracheya R et al. Membrane potential-dependent inactivation of voltage-gated ion channels in α-cells inhibits glucagon secretion from human islets. Diabetes. 2010;59:2198-2208.

41. Ahren B. Autonomic regulation of islet hormone secretion–implications for health and disease. Diabetologia. 2000;43:393-410

42. Marty N et al. Brain glucose sensing, counterregulation and feeding behavior. Physiology (Bethesda). 2007;22:241-251

43. Marty N et al. Regulation of glucagon secretion by glucose transporter type 2 (glut2) and astrocyte-dependent glucose sensors. J Clin Invest. 2005;115:3545-3553

44. McCrimmon RJ et al. Activation of ATP-sensitive K+ channels in the ventromedial hypothalamus amplifies counterregulatory hormone responses to hypoglycemia in normal and recurrently hypoglycemic rats. Diabetes. 2005;54:3169-3174

45. Han SM et al. Hypothalamic AMP-activated protein kinase mediates counter-regulatory responses to hypoglycaemia in rats. Diabetologia. 2005;48:2170-2178

46. Longuet C et al. The glucagon receptor is required for the adaptive metabolic response to fasting. Cell Metab. 2008;8:359-371.

47. Gelling RW et al. Lower blood glucose, hyperglucagonemia, and pancreatic α cell hyperplasia in glucagon receptor knockout mice. Proc Natl Acad Sci U S A. 2003;100:1438-1443

48. Hayashi Y et al. Mice deficient for glucagon gene-derived peptides display normoglycemia and hyperplasia of islet {α}-cells but not of intestinal L-cells. Mol Endocrinol. 2009;23:1990-1999.

49. Lee Y et al. Glucagon receptor knockout prevents insulin-deficient type 1 diabetes in mice. Diabetes. 2011;60:391-397.

50. Gelling RW et al. Pancreatic β-cell overexpression of the glucagon receptor gene results in enhanced β-cell function and mass. Am J Physiol Endocrinol Metab. 2009;S;297:E695-707.

51. Farhy LS et al. Amplification of pulsatile glucagon secretion by switch-off of α-cell suppressing signals in Streptozotocin (STZ)-treated rats. Am J Physiol Endocrinol Metab. 2008;295: E575 – E585.

52. Jimenez V et al. In vivo genetic engineering of murine pancreatic β cells mediated by single-stranded adeno-associated viral vectors of serotypes 6, 8 and 9. Diabetologia. 2011. In press.

53. Cheung AT et al. Glucose-dependent insulin release from genetically engineered K cells. Science. 2000;290:1959-1962.

54. Thorel F et al. Conversion of adult pancreatic α-cells to β-cells after extreme β-cell loss. Nature. 2010;464:1149-1154.

55. Wideman RD et al. Improving function and survival of pancreatic islets by endogenous production of glucagon-like peptide 1 (GLP-1). Proc Natl Acad Sci U S A. 2006;103:13468-13473.

Editorial
“Pancreatic α-cells and glucagon—neglected metabolic actors”
I- Birth and death of the α-cell
II- Regulation of glucagon expression
III- Regulation of glucagon secretion
IV- Role of glucagon in metabolism
V- Therapeutic perspectives
VI- Conclusion
Lectures during IGIS meeting and unpublished reviews
References